
Overview

First read section Kursusetööd from Ülevaade

Initial data

The initial data is located in a data structure consisting of arrays of pointers, headers and items.

Declarations of items as C / C++ structs are presented in file Items.h. There are 10 different types of items

(ITEM1, ITEM2, …, ITEM10). Declarations of headers as C / C++ structs are presented in file Headers.h.

There are 5 different types of headers (HEADER_A, HEADER_B, HEADER_C, HEADER_D, HEADER_E). The

both files are stored in Files for coursework #1.

There are 5 different types of data structures (Struct1, Struct2, Struct3, Struct4, Struct5). To generate the

initial data structure you have to use functions from DataSource.dll. This DLL is implemented by instructor

and stored in Files for coursework #1. It needs auxiliary file Colors.txt, created from

https://en.m.wikipedia.org/wiki/Lists_of_colors.

To understand the building principles of our data structures analyse the examples on the following pages.

Let us emphasize that they are just examples: the actual presence and absence of items and headers is

determined by the work of item generator built into DataSource.dll and is largerly occasional.

The DLL imports 6 public functions declared in file DataSource.h (also stored in Files for coursework #1).

Five of them create data structure and return the pointer to it. The sixth function (GetItem()) constructs a

stand-alone item and returns the pointer to it. There is also a password-protected function for the

instructor. Comments explaining the usage of public functions are in DataSource.h.

To know which item and data structure you have to use see the table.

https://www.tud.ttu.ee/im/Viktor.Leppikson/IAX0586%20ulevaade%202024.pdf
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAX0586%20kursusetood.html
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAX0586%20kursusetood.html
https://en.m.wikipedia.org/wiki/Lists_of_colors
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAX0586%20kursusetood.html
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAX0586%20kursusetood.html
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAX0586%20variandid%202024.pdf

Task

Implement class DataStructure containing the following members (text printed in blue depends on the

type of your item (1…10), specify it yourself):

1. Depending on the number of your struct (1…5)1:

HEADER_B *pStruct = nullptr;

or

HEADER_C *pStruct = nullptr;

or

HEADER_A **ppStruct = nullptr;

or

HEADER_D *pStruct = nullptr;

or

HEADER_E *pStruct = nullptr;

2. DataStructure();

Constructor that creates empty data structure.

3. DataStructure(int n);

Constructor that creates data structure of n items. n cannot exceed 100.

4. DataStructure(std::string Filename) throw(std::exception);

Constructor that reads data from a binary file. The file was created by function Write (see

below). Fails if there occur problems with file handling.

5. ~DataStructure();

Destructor that deletes all the items, vectors of pointers and headers.

6. DataStructure(const DataStructure &Original);

Copy constructor.

7. int GetItemsNumber();

Returns the current number of items in data structure.

8. pointer_to_item GetItem(char *pID);

Returns pointer to item with the specified ID. If the item was not found, returns 0.

9. void operator+=(pointer_to_Item) throw(std::exception);

Operator function to add a new item into data structure. Fails if the data structure already

contains an item with the specified ID. Usage example:

DataStructure *pds = new DataStructure;

ITEM5 *p = (ITEM5 *)GetItem(5);

*pds += p;

10. void operator-=(char *pID) throw(std::exception);

Operator function to remove and destroy item with the specified ID. Fails if there is no item

1 This attribute must be private. The following functions must be public.

with the specified ID. Usage example:

*pds-= buf; // array buf contains the ID

11. DataStructure &operator=(const DataStructure &Right);

Operator function for assignment. Do not forget that before the assignment you have to

destroy all the existing contents. Usage example:

DataStructure ds;

ds = *pds;

12. bool operator==(DataStructure &Other);

Operator function for comparison. Two data structures are equal if they contain the same

number of items and for each item from the first structure there is an item from the second

structure so that the item IDs match. The order of items in the linked lists may be different.

Returns false (not equal) or true (equal). Usage example:

cout << (ds == *pds) << endl;

13. void Write(std::string Filename) throw(std::exception);

Serializes the data structure and writes into the specified binary file. Fails if there occur

problems with file handling or if the data structure is empty.

14. friend std::ostream &operator<<(std::ostream &ostr, const DataStructure &str);

Prints all the items into command prompt window. Usage example:

cout << *pds << endl << endl;

The printout should be similar to the following example:

Requirements

1. For memory allocation and release use operators new and delete.

2. The new items must be created with function GetItem() from DataSource.dll. It guarantees that

the item is correct.

3. For C string copy use function strcpy_s.

4. For input and output use methods from iostream (cin, cout , etc.).

5. For file operations use methods from fstream.

6. In case of failure any of the functions must throw an object of standard class exception.

7. Use #pragma warning(disable : 4290) to avoid surplus warnings.

8. You may add into data structure attibutes and private functions as you consider feasible. But all

the attributes must be private.

Evaluation

The student’s work is accepted if the evaluation test funcion runs correctly and produces all the supposed

results. The template of evaluation test function is in file Test.h stored in Files for coursework #1. Usage

example:

EvaluationTest<struct item5>(5, std::string("c:\\Temp\\DataStructure.bin"));

(here the item is ITEM5 and c:\\Temp\\DataStructure.bin is the file for string the data structure).

The deadline is the week 14 of the semester (i.e. May 5). However, it is strongly advised to present the

results of coursework earlier. The students can do it after each lecture.

Presenting the final release is not necessary. It is OK to demonstrate the work of application in debug

mode of the Visual Studio environment.

To get the assessment the students must attend personally. Electronically (e-mail, GitHub, etc.) sent

courseworks are neither accepted nor reviewed. The students may be asked to explain their code or even

right on the spot write a small modification.

Read also section Hindamine from Ülevaade.

 First steps
1. Launch Visual Studio and a start the new project. The project template must be Visual C++

Windows Console Application. Suppose that the project name you have selected is Coursework1

and the location folder is C:\Projects. The wizard creates project file C:\Projects\Courswork1.sln

and source code folder C:\Projects\Coursework1\Coursework1. Into source code folder it puts

files Coursework1.cpp containing a simple main() function and also some auxilary files.

https://www.tud.ttu.ee/im/Viktor.Leppikson/IAX0586%20kursusetood.html
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAX0586%20ulevaade%202024.pdf

2. Check the project configuration. It must be2

3. Buid you solution. Now you have folders

4. From Files for coursework #1 extract DateTime.h, Headers.h, Items.h, DataSource.h, Test.h,

Colors.txt and DataSource.lib. Store them in the source code folder

C:\Projects\Coursework1\Coursework1. In the Visual Studio Solution Explorer right-click Header

Files and from the pop-up menu select Add → Existing Item. From the file list select all the four

*.h files and click Add.

5. From Files for coursework #1 extract DataSource.dll and strore to the folder containing the

executable Coursework1.exe.

6. In the solution folder right-click Coursework1 and from pop-up menu select Properties. In the

Property Pages box set configuration to All Configurations. Then open the Linker properties list,

select Input and click on row Additional Dependences:

2 We stay in debug mode. Building of the final release is not needed.

https://www.tud.ttu.ee/im/Viktor.Leppikson/IAX0586%20kursusetood.html
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAX0586%20kursusetood.html

7. Click on the button at the right edge of Additional Dependences list. A menu opens, from it select

<Edit…>. The Additional Dependeces box opens, write into it DataSource.lib (not *.dll). Select OK

and once more OK.

8. Now you may test is your project well prepared. The following code should run:

#include <iostream>
#include <exception>

#include "DateTime.h"
#include "Items.h"
#include "Headers.h"
#include "DataSource.h"

using namespace std;
// IMPORTANT: follow the given order of *.h files: DataSource.h must be the last
#define NITEM // define you item
int main()
{
 try // uncomment you Struct

 {
 //HEADER_B* p1 = GetStruct1(NITEM,100);
 //HEADER_C* p2 = GetStruct2(NITEM, 100);
 //HEADER_A** pp3 = GetStruct3(NITEM, 100);
 //HEADER_D* p4 = GetStruct4(NITEM, 100);
 //HEADER_E* p5 = GetStruct5(NITEM, 100);
 }
 catch (exception &e)
 {
 cout << e.what() << endl;
 }
 return 0;

}

If the program fails to run contact the isntructor.

